
Extracting software development information from

FLOSS Projects in GitHub

Miguel Ángel Fernández, Gregorio Robles
GSyC/LibreSoft

Universidad Rey Juan Carlos
{ma.fernandezsa@alumnos., gregorio.robles@}urjc.es

Abstract

GitHub is the most used online code
platform in the world, with +58 mil-
lion repositories. Mining informa-
tion from these millions of projects
and analysing that data is very use-
ful for both researchers and compa-
nies. This paper presents a method-
ology for extracting information from
these Free/Libre/Open Source Software
repositories stored on GitHub, applied
to a case study: the search of UML
models for quantify and analise its use
in this type of projects. For that, it
starts from a database provided by the
GHTorrent project (which offers an of-
fline mirror of data from the GitHub
REST API), and a series of scripts are
used for extracting metadata from the
repositories in order to look for patterns
and/or specific file extensions. Once
the interesting projects have been iden-
tified through an external process, they
are analysed with Perceval, a program
which extracts metrics from them.

1 Introduction

With more than 21 million users and more than 58
million repositories1, GitHub is the most used online
code platform in the world. We can extract huge

Copyright c© by the paper’s authors. Copying permitted for
private and academic purposes.

Proceedings of the Seminar Series on Advanced Techniques and
Tools for Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

1https://github.com/about

amounts of information from these million projects
about how is the software being developed: produc-
tivity, issue-tracking methods, developer-to-developer
relations, etc. [RGBM06] For researchers, GitHub
is an endless source of publicly available data for
potential studies, and for companies (specially for big
ones) is probably the best way to know deeply how
its software is evolving over time, so they can use
this data to make the right decissions for the future
(known as data-driven decissions).

It is widely known that GitHub allows to filter
projects by a certain programming language (e.g.
Python, C++, etc.), but GitHub does not offer a
mechanism through which you can identify projects
containing files with a certain extension or how
many files match with some word or pattern in their
filename in a repository. Therefore, the main research
questions are:

• RQ1: How many GitHub repositories contains at
least one file with a certain extension or a certain
pattern in its filename?

• RQ2: What’s the history of those files in the life-
span of the project?

Thus far, many studies focused in one single project
or in a limited dataset when software development
is analysed. Our goal is to extract and analyse data
from all GitHub in a scalable, semi-automated way
in order to obtain information about the usage of
a certain file type, programming language or/and
any search that can be expressed into patterns and
heuristics.

To analyse the data from all GitHub correctly,
we needed a static, reliable and updated source of this
platform. This source is provided by the GHTorrent
project [Gou13], whose purpose is “to build a scalable,

1



queriable, offline database with all the information
provided by GitHub REST API”2.
The dataset used in this study is from February,
2016. At that time, there were a total of 26 million
repositories (approx.).
As the main research that motivated this study was
interested in identify UML models introduced in a
project by its owners, we had to filter those projects
to discard forked repositories. Applying that filter we
got 12,847,555 repositories ready to be analysed.
GHTorrent does not provide information about files
from a given repository, so it’s necessary to retrieve
this information from GitHub through its API.

2 Methodology

Our methodology is based on five main stages:
In a preliminar stage, we retrieve the dataset from
GHTorrent in order to obtain the whole list of repos-
itories available in GitHub from a particular dump.
From this list we can filter projects if necessary:
non-forked ones, most used language, etc.
As the file information of the repositories is missed
in this offline database, it’s mandatory to obtain this
data through the GitHub API only for the selected
projects.

Once the list of repositories is ready, the first
step is to download the file list from each repository
in the filtered projects list (See Fig. 1). For making
this, our first script sends authenticated http requests
to GitHub API (using a given token from a real
GitHub account). These requests ask for the main
branch of the repository (master); if this branch is not
found, another request is sent asking for the default
branch. Once the main branch is obtained, another re-
quest is sent to get the file list (trees) of the repository.

The second stage is to identify the files and/or
patterns of interest by iterating over all file lists from
each repository, checking whether any file matches
with our search parameters (See Fig. 2). When a
match is found, the url of the repository is added
to a url list, that will be the list of “potential” (not
validated) projects. Additionally, an intermediate
stage may be required between this phase and the
next one. This will be detailed in “Case of Study”
section.

The third step consists on analysing those repos-
itories with a tool called Perceval, an evolution
from CVSanalY[RGBICH09] software, included in
GrimoireLab3, a free-software toolset developed by

2http://ghtorrent.org/
3http://grimoirelab.github.io/

Figure 1: Detailed schema from stage 1 script.

Figure 2: Detailed schema from stage 2 script.

2



Bitergia4. Given a repository, Perceval clones it lo-
cally and extracts metadata. This metadata includes
information like number of commits, contributors,
location, company, etc. The last phase is based
on building a database with the files produced by
Perceval (one file per repository), so the obtained
data can be easily queriable.

Limitations: The aim for this tool to be scal-
able implies to deal with several impediments.
GitHub API has a limitation of 5,000 requests per
hour & account. As it is explained before, a maxi-
mum of three requests are made to obtain the main
branch for each repository, as we are not interested
in secondary branches for our case of study. Making
the calculations about how much time would it take
to complete this first stage, we calculated that 322
days would be needed, so we opted for parallelizing
the process using many different GitHub accounts.
Finally, it took almost 90 days to complete this task.

In addition to the GitHub API limitation, we
may encounter technical limitations: it is desirable to
have a fast and stable Internet connection, enough
space in the hard drive and also use a powerful
computer, as:

• The size of the whole set of partial output files
(compressed) is 140 GB.

• Each of these partial files has to be opened and
analysed.

• At the analysis stage, the interesting projects are
cloned (downloaded + uncompressed).

3 Case study

This methodology was applied for the first time to the
study: ”The quest for Open Source projects that use
UML: Mining GitHub” [HQC+16]. This research has
been a collaborative work between Chalmers Univer-
sity and Rey Juan Carlos University, led by Michel
Chaudron, Gregorio Robles, Truong Ho Quang and
Regina Hebig.
The main goal of this study is to deepen in the
knowledge of usage and evolution of UML models in
Free/Libre/Open Source Software (FLOSS) projects,
tracking them throughout the whole projects life-span.
Some of the research questions of this study were:

• RQ1: Are there GitHub projects that use UML?
Which are these projects?

• RQ2: Are there GitHub projects in which the
UML models are also updated?

4https://bitergia.com/

Figure 3: Examples of how UML models can be found:
XML-alike (above) or image type (below).

• RQ3: When in the project are new UML models
introduced?

This case of study description is focused on the
implementation of the technical part of the study,
showing some of its data and results.

The first step specified in the methodology is,
by default, independent from the case of study. The
specific part is located mainly on the second phase,
where the search patters are detailed. It is important
to know if there is some pecularity in the data we are
looking for, for example, UML models can be found
in many different formats, but they can be classified
into two main types: text-based models, which are
XML-alike files and image-based models (See Fig.
3). This entails an additional problem as an external
validation of the data is required.

In this case, we are interested in looking for files
whose extension matches with all possible exten-
sions which an UML model can be found: "uml",

"xmi", "uxf" and "xdr" (most common exten-
sions) and files whose name may include one of the
following keywords: "xmi", "uml", "diagram",

"architecture" and "design" in addition to have
one of these extensions: "xml", "bmp", "jpg",

"jpeg", "gif", "png" and "svg".

3



As described before, an additional problem arose:
from all the identified files with the interesting exten-
sions, how many of those files really are a UML model,
and how many are not? This problem was solved by
Chalmers team using heuristics for the XML-alike files
and image processing and machine learning techniques
for image files [HQCS+14a, HQCS+14b]. Once the
repositories were verified, they were analysed using
Perceval and their data were added to the database.

3.1 Results

A total of 24,797 repositories have at least one UML
file, and a total of 93,648 UML files were identified.
That means that in all GitHub only 0.193% of the
repositories contains at least one UML model. As the
main aim for this study was studying projets that are
interesting from an industry perspective, it was neces-
sary to filter those projects which are not short-term
and do not consist of a single contributor.
Short-time projects were defined as those repositories
that:

1. Active time (time span between first and last com-
mit) less that 6 months

2. Less than 2 contributors

3. Less than 10 commits

After this filtering, the final set contained 4,650
UML-projects (out of 24,125).

4 Future work

One major issue is related to GHTorrent, as csv files
do not maintain regularity in their format, so each new
version from the database has to be manually revised
in order to adapt the input data. This should be im-
proved for future updates of the current dataset. The
enhancement of the paralellization for the retrieval is
another goal, as is a huge time-consuming stage.

Acknowledgments

This work has been funded in part by the Spanish
Gov. under SobreSale and by the Comunidad de
Madrid under “eMadrid - Investigación y Desarrollo
de tecnoloǵıas para el e-learning en la Comunidad de
Madrid”.

References

[Gou13] Georgios Gousios. The ghtorrent dataset
and tool suite. In Proceedings of the 10th
Working Conference on Mining Soft-
ware Repositories, MSR ’13, pages 233–
236, Piscataway, NJ, USA, 2013. IEEE
Press.

[HQC+16] Regina Hebig, Truong Ho Quang,
Michel R. V. Chaudron, Gregorio Rob-
les, and Miguel Angel Fernandez. The
quest for Open Source projects that use
UML: Mining GitHub. In Proceedings
19th International Conference on Model
Driven Engineering Languages and Sys-
tems, pages 173–183, 2016.

[HQCS+14a] Truong Ho-Quang, Michel R. V. Chau-
dron, Ingimar Samúelsson, Jóel Hjalta-
son, Bilal Karasneh, and Hafeez Osman.
Automatic classification of UML class
diagrams from images. In Proceedings of
the 2014 21st Asia-Pacific Software En-
gineering Conference - Volume 01, pages
399–406, 2014.

[HQCS+14b] Truong Ho-Quang, Michel R. V. Chau-
dron, Ingimar Samúelsson, Jóel Hjal-
tason, Bilal Karasneh, and Hafeez Os-
man. Automatic classification of uml
class diagrams from images. In Proceed-
ings of the 2014 21st Asia-Pacific Soft-
ware Engineering Conference - Volume
01, APSEC ’14, pages 399–406, Wash-
ington, DC, USA, 2014. IEEE Computer
Society.

[RGBICH09] Gregorio Robles, Jesús M González-
Barahona, Daniel Izquierdo-Cortazar,
and Israel Herraiz. Tools for the study
of the usual data sources found in libre
software projects. International Journal
of Open Source Software and Processes,
1(1):24–45, 2009.

[RGBM06] Gregorio Robles, Jesus M Gonzalez-
Barahona, and Juan Julian Merelo. Be-
yond source code: the importance of
other artifacts in software development
(a case study). Journal of Systems and
Software, 79(9):1233–1248, 2006.

4


