From Python to Pythonic:
Searching for Python idioms in GitHub

José Javier Merchante
Universidad Rey Juan Carlos
Fuenlabrada, Madrid, Spain

Email: jj.merchante@gmail.com

Abstract

This paper presents our work in progress.
Our study is focused on creating a web
tool that can help beginners and advanced
programmers to make their Python code
more legible and readable with the use of
Pythonic idioms, that is, using typical ways
to accomplish some tasks.

1 Introduction

Every programming language has its culture and usual
way to code a task; that’s what programmers usually
call idioms [2]. For an advanced programmer in a given
language there is always a better way of accomplishing
a task that is more suitable in that language (e.g.,
it improves its readability) instead of writing the
implementation it replaces in the same way as in
another language.

Python is a programming language that in the last
years has grown a lot. For this language there are
many tools that check the code against very common
style conventions (such as the ones specified in the
PEP-8'), but there is to our knowledge no tool that
identifies what idioms a program contains, or that
helps improving your Python code making it more
idiomatic (commonly referred to as more Pythonic [5]).
Even though no such tool exist, the Python community
is concerned a lot about these issues and many books,

Copyright © by the paper’s authors.
private and academic purposes.

Copying permitted for

Proceedings of the Seminar Series on Advanced Techniques and
Tools for Software Evolution SATToSE 2017 (sattose.org).
07-09 June 2017, Madrid, Spain.

IPEP 8 — Style Guide for
https://www.python.org/dev/peps/pep-0008/.

Python Code:

Gregorio Robles
GSyC/LibreSoft
Universidad Rey Juan Carlos
Fuenlabrada, Madrid, Spain
Email: grex@gsyc.urjc.es

articles, talks and references on how to make your
Python code more Pythonic can be found.

Many Python books and web pages explain the
language without including these idioms, and focus
on explaining the language as it would be another
programming language, but with Python syntax. As
an example, the following is correct Python:

colors = ["blue", "red", "yellow"]

for i in range(len(colors)):
print colors[i]

However, even if the code runs and works perfectly,
there is a more Pythonic way of doing it:

colors = ["blue", "red", "yellow"]

for color in colors:
print color

For these reasons, we think it would be a good idea
to analyze Python idioms and create a web application
that can help beginners and advanced programmers to
make their Python code more legible, readable, and
write the task the right, Pythonic way.

2 Methodology

For the implementation of this tool we have searched
for the most important Python idioms in books and
talks at PythonCon, the most important conference
on Python. Like this, we have collected Python
idioms of various difficulty levels. This list contains
idioms such as: List comprehensions, magic methods,
lambda functions, decorators, collections structures,
class methods or closures.

In order to identify the idioms in Python source
code, we look for tokens in Python code. For some

idioms, this is straightforward (e.g., for the with
keyword), while for others it is more complex (e.g., for
list comprehensions, in particular those that contain
Boolean logic). Then, we scan Python code in a
project with a lexer called Pygments? for these idioms.

For each idiom found, we also retrieve and store
meta-information from the versioning repository, such
as its author (we therefore use git blame). That
allows to obtain the Pythonic contribution of each
collaborator to a GitHub project.

In order to improve our tool and to perform a first
study of the use of Pythonic elements in real Python
code, we mined all projects with Python as main
language from GitHub. We used GHTorrent [3] as data
source for knowing the main programming language of
a repository?, of which 700,000 (out of over 15 million)
were in Python. Out of these, we downloaded a sample
of 70,000 projects.

Given the amount of data to be downloaded
and analyzed, the analysis of the repositories took
five weeks. Projects were downloaded, and then
non-Python files in them were removed in order to
store space. All in all, at the end of the process we
had a total of 500 GB of Python files. These were
analyzed with our tool. The output was redirected to
a database and analyzed with Pandas [4].

3 Some preliminary results

In this section, we present some preliminary results.

Figure 1 shows the number of idioms per repository.
This curve shows a powerlaw distribution with a long
tail: many of the repository have few idioms, although
more than 50% of the repositories have more than 40
idioms — the mean is 304.52. Noteworthy is the fact
that around 12% of the repositories do not contain any
of the Python idioms in their code.

Histogram for idioms per repository

Number of repositories

0 50 100 150 200 250 300 350 400
Number of idioms

Figure 1: Number of idioms per repository

Figure 2 displays the most used idioms by number
of repositories, counting an idiom only once per
repository. As can be observed, decorators and
list comprehensions are two of the most common

2http:/ /pygments.org/
3We do only consider those repositories that are non-forks.

Python idioms, although the most frequent ones are
the use of named arguments in function calls and
docstrings (attached comments in a specific format
that serves as documentation for classes and methods).
The if __name__ == "__main__" construct is also at

least one time in a repository for over 80% of the cases.

70000

60000

50000

40000

30000

HNumber of repositories

20000

10000

]

lambda
with
assert
yield
finally
deque

docstring
ifNamentain
decorator
assignOneLine
generators
NestedFunction
idiomMethods2
idiomMethods3
namedTuple
orderecdict

equalFunctionCall
listComprehensian

Number of idioms

Figure 2: Ranking of most frequent Python idioms.
Idioms are counted only once per repository.

Some of the most used and known Python idioms
are magic methods (methods that are invoked when
using a certain syntax, starting and finishing with
_, also known as dunder from double under). These
methods provide characteristics that, if implemented,
are transversal to classes and thus provide a common,
defined way for some functionality. An example
of this are the __repr__, which returns a printable
representation of an object, and __str__, which returns
a string containing a nicely printable representation
of an object, methods. Figure 3 gives the number
of occurrences of each of the most frequent magic
methods. This time, the total number of appearances,
i.e., a magic method that appears N times in a
repository will count N for that repository, is given.
The most frequent one, __init__ (the initializer
method, used in Python in a constructor-ish nature),
is omitted in the figure as it appears many more times
than the rest.

120000 Top 25 magic methods

100000

80000

60000

Times

40000

20000

0
|

=
@
c

eq
It

_repr
_str.
_call
_iter,
unicode
len
ne.
hash__
_get
nonzero__
setstate__
e
_add__

__setitem
__delitem
exit
enter

del
__setattr,

__getitem
__getattr,
__contains,
__Qgetstate

Magic method name

Figure 3: Most common magic methods (__init__ not
included).

As can be seen from Figure 3, __repr__and __str__are

the two most frequent magic methods. The next ones
are: __call__ that implements a function call operator,
__iter__ to create iterators, and __unicode__ which in
Python 2 returns characters as _str__ really returns
bytes?.

4 Work in progress

From all the repositories analyzed, we have extracted
some information about the importance of Pythonic
idioms. Right now, we are developing the web
application that will allow to improve the knowledge
in Pythonic idioms to anyone.

The application is running over Django, a high level
Python framework that encourages rapid development
and clean, pragmatic design®.

When a user enters his username of GitHub in the
web application, we select his profile repositories in a
first approach and let him introduce others that he has
contributed to. When the repositories are cloned, the
tool filters the Python files looking at the extension or
the first line of code.

Our work in progress is to identify the level of a
user and give a mark about his Python knowledge.
Our first approach is to classify the idioms in three
different levels depending on the difficulty to be learnt.

For example, analyzing a previous version of the
tool that extracts Pythonic idioms, we got the mark
that is in figure 4. That is a good mark, but is also
tricky, because in this repository there are test for each
idiom in Python.

Results

Level

Y
2
B

Suggestions

There are some idioms that do not appear in the repository. You can click on them for more information and improve your code to
be more pythonic in the future.

Figure 4: Results of 'Pythonic analyzer’ repository

We are working on better metrics that adjust better
to the reality and by this way, assign a developer a level
of mastery in the Python language and some path to
improve his level.

4In Python 3, the __str__ magic method returns characters as
in Python’s 2 __unicode__, and a new __bytes__() magic method
exists.

Shttps://www.djangoproject.com/

5 Future work

This paper shows work-in-progress in our quest for
finding how idioms are used in Python. In the near
future, we would like to do the following:

e FExtend and assess the list of Python idioms. We
would like to have a list of idioms as complete as
possible. These should be evaluated by Python
developers.

e There are idioms that are conceptually more
difficult than others. We would like, again with
the help of Python developers, see if we can
classify the idioms by their complexity.

e If idioms are good practices, we have noticed as
well the existence of anti-idioms (similar to the
patterns and anti-patterns idea [1]). We would
like to identify them and see how often they are
used.

e We would like to filter projects by their
importance, first by omitting pet or student
projects (for instance those that have a lifetime
of less than 6 months) and second by giving a
weight to projects by using data from the Python
Package Index (PIP).

e We would like to study how Python idioms get
propagated. This has two perspectives: how
do new Python idioms propagate, and how do
developers learn them.

6 Acknowledgements

The work of Gregorio Robles has been funded
in part by the Region of Madrid under project
“eMadrid - Investigacion y Desarrollo de
tecnologias para el e-learning en la Comunidad
de Madrid” (S2013/ICE-2715) and in part by the
Spanish Government under project SobreVision
(TIN2014-59400-R).

References

[1] W. H. Brown, R. C. Malveau, H. W. McCormick,
and T. J. Mowbray. AntiPatterns: refactoring
software, architectures, and projects in crisis. John
Wiley & Sons, Inc., 1998.

[2] J. Coplien. Advanced c++ programming styles
and idioms. In Technology of Object-Oriented
Languages and Systems, 1997. TOOLS 25,

Proceedings, pages 352-352. IEEE, 1997.

[3] G. Gousios and D. Spinellis. Ghtorrent:
Github’s data from a firehose. In Mining
software repositories (msr), 2012 9th ieee working
conference on, pages 12-21. IEEE, 2012.

[4] W. McKinney. Python for data analysis: Data
wrangling with Pandas, NumPy, and IPython.
O’Reilly Media, Inc., 2012.

[5]) G. Van Rossum et al. Python programming
language. In USENIX Annual Technical
Conference, volume 41, 2007.

