
Representing Component Authorship
Using Randomly Generated Glyphs

– work in progress –

Alexandre Bergel
Pleiad Lab, DCC, University of Chile

Abstract
VisualIDs are randomly generated glyphs. A glyph visually
describes an object and is designed to let a human easily
recognize similarity between the represented objects.

In this short abstract, we uses glyphs to represent code
authorship. We have employed VisualID glyphs to represents
author collaboration across over 160 classes.

1. VisualID Glyph
VisualID [1] is a technique to randomly generate visual icons,
called glyphs. A glyph represents an object and uses cognitive
abilities to identify similarity between the represented objects.
The visual aspect of a glyph is randomly generated and
indicates the similarity an object has with other objects:
two similar objects are represented with two visually similar
glyphs.

Technically, glyphs are generated from a comparison
function and a threshold. The comparison function indicates
how similar two objects are by producing a numerical value
between 0.0 and 1.0. The threshold indicates whether the two
objects are similar or not, i.e., whether their comparison is
equal or greater to the threshold. In the remaining of this
short abstract we will illustrate the glyph production using
classes as the seed objects.

To produce a glyph for a class C, the VisualID algorithm
checks whether a previous glyph has been generated for
another class D similar to C. If the class D has already
a glyph GD, then GD is mutated to produce GC , which
will be used to represent C. If no glyph has been previously

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SATTOSE ’16, Month d–d, 20yy, City, ST, Country.
Copyright © 2016 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnnReprinted from SATTOSE ’16, [Unknown
Proceedings], Month d–d, 20yy, City, ST, Country, pp. 1–2.

produced, then a random glyph is generated for C and is kept
for future comparison.

The VisualID is a relatively simple algorithm. The glyph
generation is based on a grammar made of 8 production rules:
figure, line, path, shape, null, radial, spiral, and symmetry.
These production rules are recursive. Recursion ends when a
complexity or depth is reached. A glyph is mutated by slightly
modifying some parameters associated to each production.

Figure 1: VisualID glyphs example

In our previous work [2], we have employed glyphs to
address two software engineer tasks: (i) identify classes with
the same dependencies and (ii) identify classes having a
similar set of methods. In this short paper, we use glyphs
to represent class authorship (Section 2) and presents some
possible future explorations (Section 3).

1

2. Expressing Authorship
Figure 1 represents 16 classes taken from a large application.
Similarity between two classes indicates that these two
classes have similar authors. The comparison function we
employed in this visualization takes two classes and compare
the list of authors for each class. We use the Jaccard operator
to compare these lists of authors.

The figure shows that the classes RTStyledLabel and
RTStyledMultiLine have the same authors since the glyphs are
identical. The class RTDecoratedLine share some authors with
these two classes.

Similarly, the couple RTAbstractElementShape / RTLabel /
RTShape and RTBezierLine / RTArrowedLine have the same set
of authors.

As a larger illustration, consider Figure 2. It shows the
165 classes composing the Pharo collection library. 189
programmers have contributed to these classes.

Currently, we consider all the authors having the same
degree of authorship of the class, implying that no weight is
being used for the moment.

3. Future Work
Glyphs have a great potential to enhance the programming en-
vironment to convey contextual information enabling compar-
ison. However, randomly generated glyphs are unfortunately
rarely considered to address some software engineering tasks.
VisualID glyphs have been employed in a number of diverse
situations, and have been successfully employed.

As future work, we plan to work on the following points:

• improve the notion of authorship to reflect the degree of
participation of each author.

• improve the visual rendering of glyph. Currently, a glyph
is unicolor and painting sub-glyph in a different color
could improve the cognitive ability of the glyphs.

References
[1] J. Lewis, R. Rosenholtz, N. Fong, U. Neumann, VisualIDs: auto-

matic distinctive icons for desktop interfaces, ACM Transactions
on Graphics 23 (3) (2004) 416–423.

[2] I. Fernandez, A. Bergel, J. P. S. Alcocer, A. Infante, T. Gı̂rba,
Glyph-based software component identification, in: Proceed-
ings of the 24th IEEE International Conference on Program
Comprehension (ICPC ’16), 2016.

2

Figure 2: VisualID glyphs example

3

	VisualID Glyph
	Expressing Authorship
	Future Work

