Against the Mainstream in Bug Prediction

Haidar Osman
Software Composition Group
University of Bern, Switzerland
osman@inf.unibe.ch

Abstract

Bug prediction is a technique used to estimate the most bug-prone entities in software systems. Bug prediction approaches vary in many design options, such as dependent variables, independent variables, and machine learning models. Choosing the right combination of design options to build an effective bug predictor is hard. Previous studies do not consider this complexity and draw conclusions based on fewer-than-necessary experiments.

We argue that each software project is unique from the perspective of its development process. Consequently, metrics and AI models perform differently on different projects, in the context of bug prediction.

We confirm our hypothesis empirically by running different bug predictors on different systems. We show that no single bug prediction configuration works globally on all projects and, thus, previous bug prediction findings cannot generalize.

1 Introduction

A bug predictor is an intelligent system (model) trained on data derived from software (metrics) to make a prediction (number of bugs, bug proneness, etc.) about software entities (packages, classes, files, methods, etc.). Over the last two decades, bug prediction has been a hot topic for research in software engineering and many approaches have been devised to build effective bug predictors. Among the scientific findings, two are agreed upon the most: (i) different machine learning models do not differ in predicting bugs [6][11][4][13][5], and (ii) change metrics are better than source code metrics at predicting bugs [15][9][14][17][1][8][5].

However, these studies do not consider the complexity of building a bug predictor, a process that has many design options to choose from:

1. The prediction model (neural network, statistical regression, etc.).
2. The independent variables (the metrics used to train the model like source code metrics, change metrics, etc.).
3. The dependent variable or the model output (bug proneness, number of bugs, bug density, etc.).
4. The granularity of prediction (package, class, binary, etc.).
5. The evaluation method (accuracy measures, percentage of bugs in percentage of software entities, etc.).
Most previous approaches vary one design option, which is the studied one, and fix all others. This affects the generalizability of the findings because every option affects the others and, consequently, the overall outcome, as shown in Figure 1.

We hypothesise that bug prediction findings are inherently non-generalizable. A bug prediction configuration that works with one system may not work with another because software systems have different teams, development methods, frameworks, and architectures. All these factors affect the correlation between different metrics and software defects.

To confirm our hypothesis, we run an extended empirical study where we try different bug prediction configurations on different systems. We show that no single configuration generalizes to all our subject systems and every system has its own “best” bug prediction configuration.

2 Experimental Setup

Dataset

We run the experiments on the “bug prediction data set” provided by D’Ambros et al. [3] to serve as a benchmark for bug prediction studies. This data set contains software metrics on the class level for five software systems (Eclipse JDT Core, Eclipse PDE UI, Equinox Framework, Lucene, and Mylyn). Using this data set constrains the level of prediction to be on the class level. We compare source code metrics and version history metrics (change metrics) as the independent variables.

Dependent Variable

All bug-prediction approaches predict one of the following: (1) the classification of the software entity (buggy or bug-free), (2) the number of bugs in the software entity, (3) the probability of a software entity to contain bugs (bug proneness), (4) the bug-density of a software entity (bugs per LOC), or (5) the set of software entities that will contain bugs in the near future (e.g., within a month). In this study, we consider three dependent variables: number of bugs, bug proneness, and classification.

Evaluation Method

Recently, researchers have drawn the attention to the principle of cost or effort of using a bug prediction model [12][1][8][10] [7][16][2]. The cost-aware evaluation schemes measure the maximum percentage of faults found in the top k% of lines of code (instead of entities) of a system, taking the lines of code (LOC) as a proxy for the effort of unit testing and code reviewing. In this study, we use an evaluation scheme called cost-effectiveness (CE), proposed by Arisholm et al. [1]. CE ranges between −1 and +1. The closer CE gets to +1, the more...
cost-effective the bug predictor is. A value of CE around zero indicates that there is no gain in using the bug predictor. Once CE goes below zero, it means that using the bug predictor costs more than not using it.

Machine Learning Model

For classification, we use *RandomForest (RF)*, *K-Nearest Neighbour (KNN)*, *Support Vector Machine (SVM)*, and *Neural Networks (NN)*. To predict bug proneness, we use *RF*, *KNN*, and *J48*. To predict the number of bugs, we use *linear regression (LR)*, *SVM*, and *NN*.

Procedure

For every configuration, we randomly split the data set into a training set (75%) and a test set (25%) in a way that retains the ratio between buggy and non-buggy entities. Then we train the prediction model on the training set and run it on the test set and calculate the CE of the bug predictor. For each configuration, we repeat this process 10 times and take the mean CE.

3 **Results**

We compare the mean CE of the different configuration of the different bug predictors. A preliminary analysis of the results shows that there is no global configuration of settings that suits all projects. In Table 1, we report the highest mean CE and the configuration of the bug predictor behind. We can make the following observations:

1. Every system has a unique configuration of its most cost-effective bug predictor.
2. There is no dominant configuration value for metrics, model, or output variable.
3. The cost effectiveness of bug prediction is different from one system to another.

We acknowledge the fact that a more rigorous analysis of the results is needed to have better confidence in the generalizability of the findings. However, the results in Table 1 are enough to show that (i) different machine learning models actually perform differently in predicting bugs, and (ii) there is no general rule about which metrics are better at predicting bugs.

Table 1: The most cost-effective bug prediction configuration for each system and the corresponding mean CE.

<table>
<thead>
<tr>
<th>Subject System</th>
<th>Independent Variables (Metrics)</th>
<th>Prediction Model</th>
<th>Dependent Variable (Output)</th>
<th>Mean CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eclipse JDT Core</td>
<td>Change Metrics</td>
<td>Support Vector Machine</td>
<td>Number of Bugs</td>
<td>0.351</td>
</tr>
<tr>
<td>Eclipse PDE UI</td>
<td>Source Code Metrics</td>
<td>Neural Network</td>
<td>Classification</td>
<td>0.237</td>
</tr>
<tr>
<td>Equinox</td>
<td>Source Code Metrics</td>
<td>Support Vector Machine</td>
<td>Number of Bugs</td>
<td>0.498</td>
</tr>
<tr>
<td>Lucene</td>
<td>Change Metrics</td>
<td>Random Forest</td>
<td>Bug Proneness</td>
<td>0.6</td>
</tr>
<tr>
<td>Mylyn</td>
<td>Change Metrics</td>
<td>Linear Regression</td>
<td>Number of Bugs</td>
<td>0.434</td>
</tr>
</tbody>
</table>

4 **Conclusions**

Building a software bug predictor is a complex process with many interleaving design choices. In the bug prediction literature, researchers have overlooked this complexity, suggesting generalizability where none is warranted. We argue that bug prediction studies cannot be generalized because software systems are different. Among the five subject systems we have, no two have the same configuration for building a cost-effective bug predictor. This indicates a need for more research to revisit literature findings while taking bug prediction complexity into account.
References

