
Supporting the evolution of behavioural software models

– A Research Vision

Tom Mens
Software Engineering Lab, COMPLEXYS Research Institute

University of Mons, Belgium
tom.mens@umons.ac.be

Abstract

This position paper starts by presenting the important research chal-
lenges related to model-driven software evolution. We revisit those
challenges in the context of executable models of behavioural design
(such as statecharts), and outline the research goals we aim to address
in this domain.

1 Research Challenges

Model-driven software engineering (MDE) [SV06, BCW12] relies on the systematic use of models as primary
artifacts throughout the software development lifecycle. Software models aim to reduce the accidental complexity
introduced by technical details related to the chosen hardware and software platform. Unless if software models
are considered as one-shot throw-away artefacts that are used only for designing the first version of a system, it
becomes incumbent to support their evolution over time, together with the systems they describe.

The challenges raised by this need to evolve software models have been identified repeatedly in the past. For
example, a 2005 working group report identified supporting model evolution as one of the main challenges
in software evolution research. A 2008 workshop focused on specific challenges in MDE [VMV08], and the need
to support evolution in some form emerged repeatedly. Let us summarise the evolution-related challenges that
have been identified in both reports:

• The need to support model quality. This includes defining, measuring, preserving, controlling, and improving
model quality, and also encompasses approaches like model refactoring and model testing.

• The need to support co-evolution in all its incarnations. This includes traceability between requirements and
design models, synchronisation between design models and code, consistency management between different
types of models, and coupled evolution between models and metamodels.

• The need to cope with dynamic model evolution, by providing techniques to cope with the evolution of
executable models at runtime.

• Providing formal support for evolution. While formal verification techniques allow to verify interesting
properties over models, these techniques should be made more lightweight to facilitate their take-up by
software designers with little mathematical background. In addition, these techniques need to be made
more incremental, taking into account the fact that models evolve over time, and avoiding the need to
reverify the full model even if only small changes have been made to it.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

Seminar on Advanced Techniques & Tools for Software Evolution (SATToSE), Bergen, Norway, 11-13 July 2016



• Supporting heterogeneous, multi-formalism or multi-paradigm modelling, in which systems are modelled
using different formalisms and modelling languages, always choosing the most suitable formalism at the
most appropriate level of abstraction.

• Supporting fuzzy modelling, taking into account the fact that certain models may be imprecise, incomplete,
partially inconsistent or ambiguous.

• Integrating change as a first-class concept in modelling languages, model-driven software development envi-
ronments and processes.

• Providing better support for change management in MDE. This includes better “model-aware” mechanisms
for versioning, differencing and merging, taking into account the specificities (syntax and semantics) of the
modelling language.

• Provide generic support for all of the above, so that it can be integrated easily in domain-specific modelling.

• Addressing the scalability problem, to cope with very large models, or collections of interacting models.

In our research, we aim to address many of these challenges, focusing on a specific kind of software models that
require particular attention, namely executable models of software behaviour. Such models have the advantage
of being able to represent and simulate a system’s behaviour, and to generate executable code for it.

2 Statecharts

Our research focus will initially go to statechart-based design models, but could be extended to other types of
behavioural models in a second phase. We have chosen to focus on statecharts because of their relative complexity
and the lack of advanced change support for these types of models.

Statecharts were introduced nearly three decades ago by David Harel [Har88, HG97] as a formal and visual
executable modelling language. Being now part of the UML standard, they are frequently used in industry for
modeling the executable behaviour of complex reactive event-based systems (e.g., real-time systems and embed-
ded systems), relying on commercial tools such as IBM Rational StateMate [HN96], IBM Rational Rhapsody
[HK04], Mathworks Stateflow, Yakindu Statechart Tools, and many more.

UML deliberately leaves the statechart semantics underspecified for certain aspects, enforcing tool developers
to make their own choice (especially w.r.t. how to ensure deterministic behaviour). Many semantic variations
can therefore be found in commercial statechart tools, and detailed comparisons have been reported in literature
[vdB94, Esh09, EDAN10]. Such semantic differences may lead to misunderstandings or conceptual errors for
statechart designers.

We have implemented SISMIC, a research prototype for interpreting and reasoning about executable state-
charts. It offers a discrete, step-by-step, and fully observable simulation engine, supporting the majority of the
UML 2 statechart concepts and semantics. The tool is provided as an open source library1 in Python 3 that can
be installed through the Python Package Index2. We aim to use this tool as a research platform for exploring
the evolution-related research goals that will be presented in Section 3

3 Research goals

In the remainder of this paper, for the sake of generality, we will use the term behavioural model instead of
statechart. Our medium and long-term research goal, subject to our ability to obtain funding for this research,
is to provide formal support and tool support that allows us to advance the state-of-the-art along the following
directions:

Advanced model testing: To increase their reliability, design errors should be detected in behavioural models
as early as possible. Examples of support include test-driven [Bec03], behaviour-driven [WH12] and contract-
driven development [Mey07], and advanced testing techniques [Ber07] such as mutation testing [JH11] and
concolic testing [Sen07]. We propose to explore and combine these complementary techniques at the level
of behavioural models. We will provide mechanisms based on test-driven development, in which unit tests
can be expressed by means of behavioural models themselves. We will apply the idea of behaviour-driven

1github.com/AlexandreDecan/sismic
2https://pypi.python.org/pypi/sismic



development at the level of behavioural models. We will also use design by contract at the level of behavioural
models, since this technique has been shown to detect certain types of programming errors and bugs more
effectively [PFN+14]. We propose to rely on constraint solvers and machine learning to generate new
contracts automatically, by detecting invariants during statechart execution based on the ideas of [EPG+07].
We also aim to generate new tests from contract specifications, and to automate detection and resolution of
inconsistencies or removing redundancies in contract specifications.

Lightweight formal verification: Formal verification complements model testing since it allows to find con-
ceptual design errors early (and more reliably than with conventional testing techniques). In order to
be usable by and useful to software designers with little mathematical background, we propose to use
lightweight techniques [JW96] for verifying properties and ensuring constraints over behavioural models, us-
ing both static and dynamic verification approaches. For example, the use of specification patterns [DAC99]
or domain-specific property languages [MDL+14] allows to specify formal properties in a language that is
easier to understand or closer to the domain expert. Because the statechart formalism is undecidable in
general, one needs to restrict to decidable fragments over which useful properties can be expressed with an
appropriate automata-based formalism. We will explore which type of formalism can express which type of
property in the most expressive and efficient way. We will also seek solutions to the well-known state space
explosion problem that goes hand in hand with the use of model checking techniques.

Model quality assessment: Analysing and improving model quality is crucial in any MDE setting. Indi-
vidual solutions have been proposed for measuring model quality, detecting model smells and improving
quality through behaviour preserving model refactorings. These solutions need to be made more integrated,
more scalable and more generic. We will also explore the idea of refactoring by example, based on genetic
algorithms and heuristic search [GEBK14], at the level of behavioural models.

Semantic variation: Given the presence of different semantic variants of statecharts, designers should be in-
formed about, and supported to cope with, the consequences of these differences. We propose to achieve
this by providing generic tool support to make their designs more robust to semantic variations.

Scalable modelling: Complex designs require the need to deal with multiple interacting behavioural mod-
els. We therefore need to provide proper composition and interaction mechanisms allowing to enable such
scalable designs. We propose to achieve this by drawing inspiration from component-based software en-
gineering research. The proposed mechanisms will require the integration of appropriate solutions for the
aforementioned challenges of quality assessment, automated testing and formal verification.

Design space exploration: To select the most appropriate design model for a given problem, techniques are
needed to explore and compare these alternatives (e.g., in terms of desirable properties or quality charac-
teristics) and to select the most appropriate design alternative. We propose to explore techniques based
on mutation analysis and genetic algorithms to “evolve” existing designs to ones with a better fitness for
purpose.

Variability analysis of model families. Software product line engineering [WL99] aims to support designing
families of software products as opposed to individual software products, thereby maximising reuse, increas-
ing product quality and reducing development effort. This is achieved by expressing and leveraging the
commonalities and variabilities between the different members of the product family. We propose to use
these techniques to express, reason about, and facilitate the evolution of families of behavioural models.

Semantic model evolution: We propose a wide range of techniques to cope with the evolution of behavioural
models. An operation-based model representation [?] will be provided and combined with an appropriate
model versioning approach to facilitate reasoning over the model evolution history. We will provide support
for semantic model differencing [MRR11] to detect the semantic impact of changes to behavioural models,
and model merging to integrate parallel changes. Finally, we will study support for incremental model
verification, to reverify only those model properties that are potentially impacted by a model change.



References

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering in Practice.
Morgan and Claypool, 2012.

[Bec03] Kent Beck. Test-Driven Development: By Example. Addison-Wesley, 2003.

[Ber07] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In 2007 Future of
Software Engineering, FOSE ’07, pages 85–103. IEEE Computer Society, 2007.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifications
for finite-state verification. In Int’l Conf. Software Engineering, pages 411–420. ACM , 1999.

[EDAN10] Shahram Esmaeilsabzali, Nancy A. Day, Joanne M. Atlee, and Jianwei Niu. Deconstructing the
semantics of big-step modelling languages. Requirements Engineering, 15(2):235–265, 2010.

[EPG+07] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, and Chen Xiao. The Daikon system for dynamic detection of likely invariants. Science of
Computer Programming, 69(1–3):35–45, December 2007.

[Esh09] Rik Eshuis. Reconciling statechart semantics. Science of Computer Programming, 74(3):65 – 99,
2009.

[GEBK14] Adnane Ghannem, Ghizlane El Boussaidi, and Marouane Kessentini. Model refactoring using exam-
ples: a search-based approach. J. Software: Evolution and Process, 26(7):692–713, 2014.

[Har88] David Harel. On visual formalisms. Comm. ACM, 31(5):514–530, 1988.

[HG97] David Harel and Eran Gery. Executable object modeling with statecharts. IEEE Computer, 30(7):31–
42, July 1997.

[HK04] David Harel and Hillel Kugler. Integration of Software Specification Techniques for Applications in
Engineering, chapter The Rhapsody Semantics of Statecharts (or, On the Executable Core of the
UML), pages 325–354. Springer, 2004.

[HN96] David Harel and Amnon Naamad. The STATEMATE semantics of statecharts. ACM Trans. Softw.
Eng. Methodol., 5(4):293–333, October 1996.

[JH11] Y. Jia and M. Harman. An analysis and survey of the development of mutation testing. IEEE Trans.
Soft. Eng., 37(5):649–678, Sept 2011.

[JW96] Daniel Jackson and Jeanette Wing. Lightweight formal methods. IEEE Computer, pages 21–22,
April 1996.

[MDL+14] Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans Vangheluwe, and Manuel Wim-
mer. ProMoBox: A framework for generating domain-specific property languages. In Int’l Conf.
Software Language Engineering (SLE), volume 8706 of Lect. Notes in Computer Science, pages 1–20.
Springer, 2014.

[Mey07] Bertrand Meyer. Contract-driven development. In Int’l Conf. Fundamental Approaches to Software
Engineering (FASE), volume 4422 of Lect. Notes in Computer Science, page 11. Springer, 2007.

[MRR11] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. Models in Software Engineering: Workshops
and Symposia at MODELS 2010 - Reports and Revised Selected Papers, chapter A Manifesto for
Semantic Model Differencing, pages 194–203. Springer, 2011.

[PFN+14] Yu Pei, Carlo A. Furia, Martin Nordio, Yi Wei, Bertrand Meyer, and Andreas Zeller. Automated
fixing of programs with contracts. IEEE Trans. Soft. Eng., 40(5):427–449, 2014.

[Sen07] Koushik Sen. Concolic testing. In Int’l Conf. Automated Software Engineering, pages 571–572. ACM,
2007.



[SV06] Thomas Stahl and Markus Völter. Model Driven Software Development: Technology, Engineering,
Management. John Wiley & Sons, 2006.

[vdB94] Michael von der Beeck. Int’l symp. formal techniques in real-time and fault-tolerant systems. In Hans
Langmaack, Willem-Paul Roever, and Jan Vytopil, editors, A comparison of Statecharts variants,
pages 128–148. Springer, 1994.

[VMV08] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. Challenges in model-driven software
engineering. In Michel Chaudron, editor, Workshops and Symposia at MoDELS 2008, volume 5421
of Lect. Notes in Computer Science. Springer, 2008.

[WH12] Matt Wynne and Aslak Hellesoy. The Cucumber Book: Behaviour-Driven Development for Testers
and Developers. Pragmatic Bookshelf, 2012.

[WL99] D. M. Weiss and R. Lai, editors. Software Product Line Engineering: A Family-Based Software
Development Process. Addison-Wesley, 1999.


